67,017 research outputs found

    Ionization of ions

    Get PDF
    Charged particle binary encounter model modified for evaluating ionization cross section of positive ions by electron impac

    Discrepancies between decoherence and the Loschmidt echo

    Full text link
    The Loschmidt echo and the purity are two quantities that can provide invaluable information about the evolution of a quantum system. While the Loschmidt echo characterizes instability and sensitivity to perturbations, purity measures the loss of coherence produced by an environment coupled to the system. For classically chaotic systems both quantities display a number of -- supposedly universal -- regimes that can lead on to think of them as equivalent quantities. We study the decay of the Loschmidt echo and the purity for systems with finite dimensional Hilbert space and present numerical evidence of some fundamental differences between them.Comment: 6 pages, 3 figures. Changed title. Added 1 figure. Published version

    Topological phases of fermions in one dimension

    Get PDF
    In this paper we show how the classification of topological phases in insulators and superconductors is changed by interactions, in the case of 1D systems. We focus on the TR-invariant Majorana chain (BDI symmetry class). While the band classification yields an integer topological index kk, it is known that phases characterized by values of kk in the same equivalence class modulo 8 can be adiabatically transformed one to another by adding suitable interaction terms. Here we show that the eight equivalence classes are distinct and exhaustive, and provide a physical interpretation for the interacting invariant modulo 8. The different phases realize different Altland-Zirnbauer classes of the reduced density matrix for an entanglement bipartition into two half-chains. We generalize these results to the classification of all one dimensional gapped phases of fermionic systems with possible anti-unitary symmetries, utilizing the algebraic framework of central extensions. We use matrix product state methods to prove our results.Comment: 14 pages, 3 figures, v2: references adde

    Classification of the phases of 1D spin chains with commuting Hamiltonians

    Full text link
    We consider the class of spin Hamiltonians on a 1D chain with periodic boundary conditions that are (i) translational invariant, (ii) commuting and (iii) scale invariant, where by the latter we mean that the ground state degeneracy is independent of the system size. We correspond a directed graph to a Hamiltonian of this form and show that the structure of its ground space can be read from the cycles of the graph. We show that the ground state degeneracy is the only parameter that distinguishes the phases of these Hamiltonians. Our main tool in this paper is the idea of Bravyi and Vyalyi (2005) in using the representation theory of finite dimensional C^*-algebras to study commuting Hamiltonians.Comment: 8 pages, improved readability, added exampl

    Circumstellar effects on the Rb abundances in O-rich AGB stars

    Full text link
    For the first time we explore the circumstellar effects on the Rb (and Zr) abundance determination in O-rich asymptotic giant branch (AGB) stars by considering the presence of a gaseous circumstellar envelope with a radial wind. A modified version of the spectral synthesis code Turbospectrum was used to deal with extended atmosphere models and velocity fields. The Rb and Zr abundances were determined from the resonant 7800A Rb I line and the 6474A ZrO bandhead, respectively, in five representative O-rich AGB stars with different expansion velocity and metallicity. By using our new dynamical models, the Rb I line profile (photospheric and circumstellar components) is very well reproduced. Interestingly, the derived Rb abundances are much lower (by 1-2 dex) in those O-rich AGB stars showing the higher circumstellar expansion velocities. The Zr abundances, however, remain close to the solar values. The Rb abundances and Rb/Zr ratios derived here significantly alleviate the problem of the present mismatch between the observations of intermediate-mass (4-8 solar masses) Rb-rich AGB stars and the AGB nucleosynthesis theoretical predictions.Comment: Accepted for publication in Astronomy & Astrophysics Letters (7 pages, 5 figures, and 2 tables); final version (language corrected

    Why are massive O-rich AGB stars in our Galaxy not S-stars?

    Full text link
    We present the main results derived from a chemical analysis carried out on a large sample of galactic O-rich AGB stars using high resolution optical spectroscopy (R~40,000-50,000) with the intention of studying their lithium abundances and/or possible s-process element enrichment. Our chemical analysis shows that some stars are lithium overabundant while others are not. The observed lithium overabundances are interpreted as a clear signature of the activation of the so-called ``Hot Bottom Burning'' (HBB) process in massive galactic O-rich AGB stars, as predicted by the models. However, these stars do not show the zirconium enhancement (taken as a representative for the s-process element enrichment) associated to the third dredge-up phase following thermal pulses. Our results suggest that the more massive O-rich AGB stars in our Galaxy behave differently from those in the Magellanic Clouds, which are both Li- and s-process-rich (S-type stars). Reasons for this unexpected result are discussed. We conclude that metallicity is probably the main responsible for the differences observed and suggest that it may play a more important role than generally assumed in the chemical evolution of AGB stars.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "Planetary Nebulae as astronomical tools" held in Gdansk, Poland, jun 28/jul 02, 200

    Non-Markovian Random Walks and Non-Linear Reactions: Subdiffusion and Propagating Fronts

    Full text link
    We propose a reaction-transport model for CTRW with non-linear reactions and non-exponential waiting time distributions. We derive non-linear evolution equation for mesoscopic density of particles. We apply this equation to the problem of fronts propagation into unstable state of reaction-transport systems with anomalous diffusion. We have found an explicit expression for the speed of propagating front in the case of subdiffusion transport.Comment: 7 page

    Synchronization transition of heterogeneously coupled oscillators on scale-free networks

    Full text link
    We investigate the synchronization transition of the modified Kuramoto model where the oscillators form a scale-free network with degree exponent λ\lambda. An oscillator of degree kik_i is coupled to its neighboring oscillators with asymmetric and degree-dependent coupling in the form of \couplingcoeff k_i^{\eta-1}. By invoking the mean-field approach, we determine the synchronization transition point JcJ_c, which is zero (finite) when η>λ−2\eta > \lambda-2 (η<λ−2\eta < \lambda-2). We find eight different synchronization transition behaviors depending on the values of η\eta and λ\lambda, and derive the critical exponents associated with the order parameter and the finite-size scaling in each case. The synchronization transition is also studied from the perspective of cluster formation of synchronized vertices. The cluster-size distribution and the largest cluster size as a function of the system size are derived for each case using the generating function technique. Our analytic results are confirmed by numerical simulations.Comment: 11 pages, 3 figures and two table
    • …
    corecore